Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosci Rep ; 41(1)2021 01 29.
Article in English | MEDLINE | ID: covidwho-1177129

ABSTRACT

ORF7a is an accessory protein common to SARS-CoV1 and the recently discovered SARS-CoV2, which is causing the COVID-19 pandemic. The ORF7a protein has a structural homology with ICAM-1 which binds to the T lymphocyte integrin receptor LFA-1. As COVID-19 has a strong immune component as part of the disease, we sought to determine whether SARS-CoV2 would have a similar structural interaction with LFA-1. Using molecular docking simulations, we found that SARS-CoV2 ORF7a has the key structural determinants required to bind LFA-1 but also the related leukocyte integrin Mac-1, which is also known to be expressed by macrophages. Our study shows that SARS-CoV2 ORF7a protein has a conserved Ig immunoglobulin-like fold containing an integrin binding site that provides a mechanistic hypothesis for SARS-CoV2's interaction with the human immune system. This suggests that experimental investigation of ORF7a-mediated effects on immune cells such as T lymphocytes and macrophages (leukocytes) could help understand the disease further and develop effective treatments.


Subject(s)
COVID-19/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Macrophage-1 Antigen/immunology , SARS-CoV-2/immunology , Viral Proteins/chemistry , Viral Proteins/immunology , Binding Sites , Humans , Lymphocyte Function-Associated Antigen-1/chemistry , Macrophage-1 Antigen/chemistry , Molecular Docking Simulation , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL